Evaluate the line integral $$\int_C (x+2y)dx + x^2dy,$$ where $C$ consists of line segments from $(0,0)$ to $(2,1)$ and from $(2,1)$ to $(3,0)$.

You are watching: Evaluate the line integral, where c is the given curve.

How do you solve this by using the following parametrics? I split them up but got a negative answer of -1/3. What"s wrong?

For $C_1$ got, $\langle t, t/2\rangle$, $0 \leq t \leq 2$.

For $C_2$ got, $\langle t, 3-y\rangle$, $2 \leq t \leq 3$.


*

Hints:

$$\;\;\;(0,0)\to(2,1)\,:\;\;\; 0\le x\le 2\;,\;\;y=\frac x2\implies$$

$$\int\limits_{(0,0)}^{(2,1)}(x+2y)dx+x^2dy=\int\limits_0^2 (x+x)dx+x^2\left(\frac12\,dx\right)=\int\limits_0^2\left(\frac12x^2+2x\right)dx=$$

$$=\frac16\cdot8+4=\frac{16}3$$

and something similar with the other one...

See more: How Far Is Seguin From San Antonio, Tx To Seguin, Tx, Distance From San Antonio, Tx To Seguin, Tx

Added:

$$(2,1)\to(3,0):\;\;\;2\le x\le 3\;,\;\;y=-x+3\implies$$

$$\int\limits_{(2,1)}^{(3,0}(x+2y)dx+x^2dy=\int\limits_2^3 (x+2(-x+3))dx+x^2\left((-1)\,dx\right)=\int\limits_2^3\left(-x^2-x+6\right)dx=$$

$$\left.-\frac13x^3\right|_2^3-\left.\left.\frac12x^2\right|_2^3+6x\right|_2^3=-\frac{19}3-\frac52+6=-\frac{17}6$$


Share
Cite
Follow
edited Apr 30 "13 at 21:05
answered Apr 30 "13 at 20:56
*

DonAntonioDonAntonio
203k1717 gold badges116116 silver badges269269 bronze badges
$\endgroup$
2
Add a comment |
1
$\begingroup$
Try writing these integrals as$$\int_C (x+2y,x^2)\cdot (dx,dy)$$where $\cdot$ is the usual inner product.Now, for $C_1$, make $(x,y)=(x(t),y(t))=(t,\frac{t}{2})$ (if your parametrization is correct), from which we have $dx=dt$ and $dy=\frac{dt}{2}$. You can now easily integrate with respect to $t$, within the range where $t$ varies.


Share
Cite
Follow
answered Apr 30 "13 at 20:50
*

MarraMarra
4,4941919 silver badges5454 bronze badges
$\endgroup$
Add a comment |

Not the answer you're looking for? Browse other questions tagged multivariable-calculus or ask your own question.


Featured on Meta
Linked
0
How do you evaluate this line integral, where C is the given curve?
Related
0
How do you evaluate this line integral, where C is the given curve?
1
Evaluate the line integral $\int_C \ x^2 dx+(x+y)dy \ $
1
Evaluate a line integral using the fundamental theorem of line integrals
1
Evaluate the line integral given the path of a helix?
0
Evaluate the line integral given the pathway C= C1+ C2
1
Evaluate line integral without Green's Theorem
0
Evaluate integral where $C$ is the path of straight line segments in 3D
Hot Network Questions more hot questions
*

ugandan-news.comematics
Company
Stack Exchange Network
site design / logo © 2021 Stack Exchange Inc; user contributions licensed under cc by-sa. rev2021.10.19.40496


ugandan-news.comematics Stack Exchange works best with JavaScript enabled
*

Your privacy

By clicking “Accept all cookies”, you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy.